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Abstract 

Using solar energy to dry various materials, such as textiles, industrial components, and 

agricultural produce, solar dryers are an effective way to dry a variety of materials. Open sun 

drying (OSD) is a well-established and traditional method of drying agricultural products in the 

open air. However, OSD has various limitations that can be overcome by employing different 

types of solar dryers. To enable solar dryers to operate throughout the day, researchers have 

integrated thermal energy storage (TES) units, leading to a growing field of research. This 

integration allows solar dryers to function during daylight hours as well. Paraffin wax, which is 

easily accessible, cost-effective, and possesses a large thermal energy storage (TES) capacity 

relative to its volume, has been widely utilized as a sensible and latent heat storage material in 

solar dryers since the 1950s. This work review comprehensively of the applications of paraffin 

wax in solar dryers integrated with TES units. The article describes thermo-physical 

characteristics of various types of paraffin wax are discussed in detail. A comparison is made in 

terms of thermal performance, drying efficiency, and drying time between different types of 

solar dryers with and without paraffin wax. The review highlights the possibility of incorporating 

diverse TES units within a dryer. Additionally, the article presents an overview of current 

technologies thermal conductivity can be enhanced between paraffin wax and drying air, as well 

as the rate of heat transfer. Furthermore, the challenges and prospects associated with Paraffin 

wax is discussed in relation to solar drying. Notably, the thermal efficiency of solar dryers can be 

improved by mixing kerosene and n-docosane with paraffin wax in a 2:1 ratio, resulting in a 50% 

increase in thermal efficiency. 
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1. Introduction 

Given the finite nature of resources and the significant pollution and climate change caused by 

other energy sources, scientists and researchers worldwide are actively pursuing renewable 

energy sources. Additionally, the world faces significant challenges due to a growing population 

and an increase in energy-intensive products. It is possible to make use of solar energy in a 

number of different ways, including water heating, space heating, drying, solar furnaces, solar 

power, distillation, and ponds. Drying applications require energy from various sources, 

including electricity, natural gas, biomass, fossil fuels, and solar energy. The substantial energy 

consumption associated with drying applications has long been recognized. Specifically, thermal 

drying accounts for around in developed countries, the amount of industrial energy use varies 

between 10 and 20 percent [1–4]. Drying agricultural products involves energy-intensive 

processes that traditionally rely on biomass, solar energy as energy sources, and fossil fuels. In 

recent years, however, there has been a growing shift towards Solar energy is one of the most 

sustainable and new sources of energy. This transition is driven by the depletion of the 

environmental pollution and fossil fuels associated with their usage. Solar energy, in contrast, 

offers a clean, renewable, and environmentally friendly alternative, free from any harmful 

emissions. It represents an inexhaustible energy source that holds great potential for sustainable 

agricultural practices [5]. Drying is a well-established and extensively employed Food 

preservation method, aimed at reducing Food products' moisture content to prolong their shelf 

life. This technique is commonly employed in the preservation of agricultural commodities as it 

not only improves their visual attributes, such as color, taste, and appearance, but also 
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microorganisms are inhibited by it, prevents insect infestations, and reduces the presence of 

contaminants [6]. Over the past three decades, a diverse range of several types of solar dryers 

have been developed and brought into commercial use for the purpose of drying food materials. 

There are different types of solar dryers, including: direct, mixed, and indirect configurations. 

These advancements in solar drying technology have enabled more efficient and effective drying 

processes for food materials [7]. Among the different types of dryer models developed and 

assessed globally, the ISD (Integrated Solar Dryer) Based on both product drying behavior and 

drying cost, this model has proven to be the most efficient. Three crucial components of an ISD 

come together in order to facilitate the dehydration of materials in the dryer:  solar collectors to 

generate hot air, a drying chamber to remove moisture from the material, and a blower to 

circulate air within the dryer. Depending on the method of air circulation, ISDs can be 

categorized as either natural convection or forced convection units. In recent years, forced 

convection dryers have gained increasing popularity due to their ability to facilitate more precise 

drying control and efficient heat extraction [8]. The solar dryer exhibits a drawback in its 

reliance on solar energy, making it susceptible to the influence of weather conditions, which can 

significantly impact its efficiency. To overcome this limitation, a viable approach involves the 

storage of energy during periods of ample solar radiation for utilization during periods when 

solar energy is unavailable or when the sky is cloudy. Extensive literature offers numerous 

examples that illustrate this practical solution, highlighting the potential for energy storage to 

enhance the reliability and effectiveness of solar dryers under varying weather conditions [9]. A 

study conducted by Abubakar et al. [10] incorporated rock-packed beds as storage units in two 

mixed-mode solar dryers. Comparing the performance of solar dryers that are equipped with 
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storage materials to those that are not with respect to their performance, the study found that the 

inclusion of storage material resulted in a notable 13% increase in efficiency.  

Helwa & Abdel Rehim [11] An analysis of the efficiency of a solar dryer has been conducted 

in this study with the objective of finding out system that incorporated a pebble bed storage 

system alongside solar energy. According to the results of the study, the solar dryer has proved to 

be a successful method of drying with pebble bed storage effectively raised the inlet air 

temperature during nighttime without causing a decrease in the daytime inlet air temperature, and 

vice versa. 

Natarajan et al  [12] A tunnel-type dryer was investigated by utilizing a variety of heat storage 

materials in order to assess the thermal performance of the dryer such as a sand bed, a rock bed, 

and aluminum fillings. The study compared the thermal efficiencies of different dryer 

configurations, including a dryer without heat storage, a dryer with a sand bed, a dryer with a 

rock bed, and a dryer with aluminum fillings, which yielded thermal efficiencies of 9.9%, 

15.46%, 14.75%, and 13.7%, respectively. The findings suggest that tunnel dryers exhibit 

superior material storage capabilities when utilizing sand beds. According to this study was 

carried out by Koçak et al. [13] the utilization of thermal energy storage mediums a dryer's 

performance can be enhanced by this. The inclusion of a thermal storage medium, as identified 

in this study, leads to a reduction in energy losses from the drying chamber. 

The present study provides a comprehensive examination of TES systems utilizing paraffin 

wax integrated with various solar dryers. It explores different solar drying methods, including 

Hybrid, indirect, and direct approaches, along with the types of dryers and specific applications 

of the TES system and the types of PCM used for drying. The performance of paraffin wax-

based dryers is analyzed in comparison to non-paraffin wax-based dryers based on collector 
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efficiency, drying efficiency, and drying time. There is an extensive discussion of the 

thermophysical properties of different paraffin waxes, discussing their advantages, 

disadvantages, merits, and demerits. Additionally, methods and technologies for enhancing TES 

systems based on paraffin are discussed in regards to their conductivity and the rate at which heat 

is transferred. The study presents the results in tabular form, summarizing various types of 

operating conditions, and TES setups. Various factors influencing the drying process, such as 

temperature range, drying time, protecting the food items from dust, and the types of materials 

(e.g., fruits, vegetables, medicinal, seafood or herbal leaves), are considered. The article presents 

novel insights into the field is possible to manufacture solar dryers using paraffin wax, offering 

valuable details for further research and development. 

2.  Various Types and Classifications of Solar Dryers 

Typically, there are two basic types of solar dryers: natural convection models and forced 

convection models. These two classifications are based on the underlying principles of air 

circulation within the dryer system as shown in Figure 1. 

Solar dryers employing natural convection utilize buoyancy-driven mechanisms to generate 

airflow, whereas solar dryers powered by electricity or solar panels employ blowers to generate 

airflow. 
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Figure 1: Dryers are categorized based on their operational effectiveness 

 

There are four distinct types of solar dryers, which fall under either natural or forced 

convection: hybrid, mixed-mode, indirect, and direct solar dryers [14,15]. 

2.1. Direct Solar Dryers (DSDs) 

solar drying systems consisting of a box or greenhouse structure with trays where products are 

positioned on a transparent cover. The transparent glass allows for the direct transmission of 

solar energy to the products [16], illustrate in Figure 2.  
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Figure 2: Direct solar dryer [17] 

 

2.2. Indirect Solar Dryers (ISDs) 

Figure 3 illustrate solar air collectors (SACs) are utilized air is heated to make it comfortable 

then directed into a drying cabinet. In this cabinet, trays are arranged to hold the products 

undergoing drying. Moisture from the products is subsequently expelled through a chimney 

located at the top of the system [18]. 
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Figure 3: Indirect solar dryer with PCMs [19]  

 

2.3. Mixed-Mode Solar Dryers (MSDs) 

This model integrates a combination of a DSD (Direct Solar Dryer) and an ISD (Indirect Solar 

Dryer) as shown in Figure 3. It incorporates a solar air collector (SAC), a drying cabinet, and a 
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chimney. The SAC harnesses heat from both solar air collectors and direct sunlight, which in 

turn facilitates the evaporation of moisture from food products within the drying cabinet [20]. 

 

Figure 4: mixed solar dryer with PCMs [21] 

2.4. Hybrid Solar Dryers (HSDs) 

In addition to solar energy, HSD (Hybrid Solar Dryers) makes use of various auxiliary energy 

sources such as biomass, electricity, waste heat, and other forms of energy to facilitate the 

evaporation of moisture in food products [22]. 
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Figure 5: PVT hybrid solar dryer with PCMs [23] 

 

 

3. A brief Overview of Materials that Store Sensible Heat (SHS) and Latent 

Heat (LHS) 

3.1. Thermal Energy Storage Classification  

Thermal energy refers to the alteration in the internal energy of an object caused by a change in 

temperature within a well-insulated solid or fluid. It encompasses both sensible heat and latent 

heat, or a combination of the two. Figure 6 offers a concise overview of the primary techniques 

and devices employed for the storage of solar thermal energy [24]. This form of heat storage, 

known as sensible heat storage (SHS), involves storing energy by raising the temperature of a 

solid or liquid. By utilizing the material's heat capacity and its temperature change, thermal 
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energy can be stored when the material is charged or discharged. The quantity of heat stored in a 

medium is influenced by various factors, including its specific heat, the extent of temperature 

change, and the amount of material being stored. Water is considered the most suitable material 

for SHS due to its affordability and high specific heat. Alternatively, for temperatures exceeding 

98 degrees Celsius, liquid metals, liquid oils, and molten salts are utilized. Rock beds are utilized 

as storage materials for air-conditioning applications. 

3.2. Solar Dryers Use Phase Change Materials (or LHS) 

When a substance undergoes a phase transition, such as changing solids into liquids or liquids 

into gases, there is a transfer of latent heat. Transitions between phases can either absorb or 

release this latent heat, while the temperature remains relatively constant within a certain range 

[25]. A thermochemical system provides an example of this process, where heat is absorbed or 

released during a reversible chemical reaction that involves breaking and reforming molecular 

bonds. In this case, three factors determine the amount of heat stored: the quantity of storage 

material, the heat produced by the endothermic process, and the degree of conversion. There are 

many methods available for storing thermal energy, but latent heat storage in particular has 

gained a lot of attention. In operation, it is nearly isothermal because of its high density in terms 

of volume and mass. There is a constant temperature at which the heat is stored, corresponding to 

the phase transition temperature of the PCM. 
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Figure 7: Thermal Energy Storage classification [26] 

3.2.1 Classification of PCM 

The categorization of PCM based on their organic types is depicted in Figure 8. Organic 

compounds are further classified non-paraffinic and paraffinic compounds. Additionally, based 

on their chemical properties, organic compounds can be further divided in metallic and salt 

hydrates compounds. 

3.3. Enhancing Solar Dryer Efficiency Through the Integration of LHS or PCM 

3.3.1 Organic PCMs. 

PCMs of this category are categorized as either paraffins or non-paraffins depending on the 

arrangement of carbon and hydrogen atoms in their molecular composition. During the process 

of melting and solidifying, these substances exhibit a consistent melting behavior known as 

congruent melting. This implies that they maintain their latent heat of fusion without undergoing 
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phase separations or permanent loss. Furthermore, these materials have the ability to self-

nucleate with minimal or no supercooling, and they generally do not cause corrosion. Paraffin 

wax is the PCM most commonly utilized in commercial applications, and it is priced at 

approximately $2 per kilogram [27,28]. 

3.3.1.1. Inorganic PCMs. 

Inorganic PCMs can be distinguished by the absence of carbon atoms in their molecular 

structure. These PCMs are typically water-based and referred to as aqueous PCMs. One notable 

characteristic of these PCMs is that they do not experience significant supercooling, and their 

heat of fusion remains consistent even with repeated cycling. Additionally, they exhibit favorable 

thermal conductivity and have the ability to store a substantial amount of energy within a small 

volume. However, it is important to consider limitations such as causticity and the potential for 

leakage. 

In terms of composition, there are two main types of inorganic PCM salts: salt hydrates, such 

as calcium chloride, which can be obtained at a cost of $0.20 per kilogram, and metal salts, 

which are available at a cost of $0.15 per kilogram [29,30]. 

3.3.1.2. PCM in the Form of Eutectics 

Eutectics consist of a combination of two or more components, each with a minimum melting 

point. Upon melting and freezing, eutectics undergo simultaneous phase changes, leading to the 

formation of crystallized mixtures comprising component crystals. The nature of eutectics makes 

it highly unlikely for segregation to occur during the melting or freezing process, as the crystals 

freeze together, creating a closely integrated mixture that offers minimal chances for component 

separation. When the components are in a molten state, they both undergo liquefaction 

simultaneously, with only a slight possibility of separation taking place [31,32]. 
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Figure 8: Classification of PCMs [33–40] 

Based on Table 1, extensive research has been conducted to assess the drying efficiency of 

different types of dryers over the past few decades. Biomass dryers and solar dryers utilizing 

direct radiation exhibit lower efficiency compared to other types. However, it is important to 

acknowledge that variations in efficiency across different drying processes are inevitable. Both 

indirect solar dryers and gas dryers have demonstrated effective drying methods with higher 

efficiency. Hybrid dryers, which utilize solar energy as a secondary source, heavily rely on the 

effectiveness of this secondary source for their efficiency. Solar thermal systems that store solar 

energy offer the advantage of providing drying even in the absence of direct solar incidence, 

thereby reducing drying costs by eliminating the need for auxiliary energy sources. 
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Table 1: The average efficiencies of different types of dryers over a specific period. 

Dryer types Products Average efficiency Reference 

Indirect solar  Onion  35.0% [41] 

Indirect solar Mango slices 33.8% [42] 

Indirect solar Orange 34.4% [43] 

Indirect solar Okra 26.1% [44] 

Indirect solar Apple 39.0% [45] 

Indirect solar Medicinal plants 26.1% [46] 

Solar-electric hybrid Garlic cloves 79.7% [47] 

Biomass-solar hybrid Rice 15.4% [48] 

Hybrid PV/T  crops 18.0% [23] 

Hybrid geothermal food 20.5% [49] 

Hybrid products 75.0% [50] 

 

4. Future Trends 

PCMs have garnered significant attention and advancements in diverse applications including 

district cooling, drying, and heating processes. However, in terms of applications involving high 

temperatures such as thermal energy storage in industrial process heat or solar thermal power 

sectors, there is still relatively less development. As a result, current research and development 

efforts mainly concentrate on concentrating solar power systems for high-temperature thermal 

storage (CSP) Further exploration and alternative applications are being investigated to mitigate 

the supercooling tendency of PCMs, high-temperature TES must be used. 

The effectiveness of discharge and charging energy rates can be hindered by the low thermal 

conductivity of PCM during phase transformations. Therefore, in order to facilitate efficient 

phase transformations, having a high thermal conductivity is crucial in order to facilitate the 

rapid transfer of thermal charge as well as its discharge. Conversely, certain PCMs may remain 

in a solid state even when the temperature of the substance is lowered below its normal freezing 

point, it will become liquid. The PCM transforms into a liquid state as soon as it reaches its 
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freezing temperature. However, when the temperature drops significantly below the melting 

point of the PCM, it undergoes the solidification process and becomes solid again. This 

phenomenon, known as supercooling, can restrict the usability of the PCM in specific 

applications according to its specifications. Consequently, efforts are made to reduce the 

temperature after a phase change, which triggers crystallization, to a level that allows the release 

of latent heat, which is only liberated once the crystallization process has been initiated. In the 

context of energy storage applications, this condition would be undesirable [51–54]. 

In this section, the significant advancements and emerging research trends related to the 

properties of PCMs are examined. These include the improvement of thermal conductivity, the 

mitigation of supercooling through nanoencapsulation techniques, and the incorporation of 

nanomaterial additives. Various strategies are employed to address these challenges, and an 

overview of these approaches can be found in Figure 14. 

 

Figure 9: A sketch of how PCMs will develop in the future [55] 

4.1. Encapsulated PCM 

Encapsulation refers to the process of enclosing a particle within a coating material or 

embedding it in a matrix, resulting in the formation of a capsule where the particle is surrounded 

or encapsulated by the coating material or matrix. Capsules come in various shapes such as 
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spherical, tubular, oval, and square, and can be either regular or irregular in nature. Changes in 

the volume have been made to accommodate these changes that occur during phase 

transformations, it is sometimes necessary to incorporate an additional air pocket within the core 

of the component. The outer shell of the phase change material (PCM) must possess sufficient 

strength to withstand the stresses generated during the PCM's phase change process, which is 

characterized by volumetric changes. There are two types of PCM: solid PCMs and those 

dispersed within carrier fluids. A slurry of microencapsulated PCMs is a mixture comprising a 

PCM and a carrier fluid. This approach serves as one of the methods to address issues associated 

with PCMs, the thermal conductivity of a material, for example, is low, thermal instability, 

reduced heat release rate, and decreased thermal system efficiency. Encapsulation of PCMs not 

only increases their surface area but also provides protection against environmental factors, 

improves compatibility, and reduces corrosion resulting from PCM utilization [56–60]. 

 

4.2. Encapsulated PCM Places and Effect on the Dryer 

By incorporating PCM within the solar air heater duct, the influx of dust and microorganisms 

into the dryer chamber can be effectively prevented. This preventive measure not only ensures 

the preservation of heat but also plays a critical role in safeguarding the health and hygiene of the 

dried fruit. Hence, installing PCM in the solar air heater passage serves the dual purpose of heat 

storage and maintaining the sanitary conditions necessary for the dried fruit [61–63]. 

5. Conclusions and Recommendations for Future Studies 

In conclusion, the present study reveals a predominance of small-scale and experimental solar 

drying systems incorporating PCMs. Development efforts and Extensive research are imperative 
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prior to the widespread adoption of TES in large-scale solar dryers for successful industrial 

applications. For both large- and small-scale implementations, dryer systems integrated with 

TES must adhere to stringent criteria of affordability, reliability, environmental sustainability, 

efficiency, and high-quality performance. The food industry stands to gain significantly from 

large-scale solar drying methods utilizing PCMs to ensure superior product quality (conventional 

drying methods, such as fossil-fuel-based dryers, are notorious for their high energy consumption 

and emissions). Future research endeavors should prioritize sustainable strategies for scaling up 

innovative drying techniques, with a particular focus on environmental and economic 

consideration.
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